Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ray J. Butcher,<sup>a</sup> Robin Evans<sup>b</sup> and R. Gilardi<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and <sup>b</sup>Laboratory for the Structure of Matter, Naval Research Laboratory, Washington DC 20375, USA

Correspondence e-mail: gilardi@nrl.navy.mil

#### **Key indicators**

Single-crystal X-ray study T = 94 K Mean  $\sigma$ (C–C) = 0.002 Å R factor = 0.035 wR factor = 0.087 Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 2,4,6-Trinitro-2,4,6,8-tetraazabicyclo[3.3.0]octan-7-one

The structure of 2,4,6-trinitro-2,4,6,8-tetraazabicyclo[3.3.0]octan-7-one,  $C_4H_5N_7O_7$ , is reported. The molecule contains two unsymmetrically substituted planar fused five-membered rings with a *cis* junction between them. Received 26 July 2004 Accepted 2 August 2004 Online 21 August 2004

# Comment

The title compound, (I), contains two fused five-membered rings which are unsymmetrically substituted. One ring contains two nitramine groups, while the other contains a single nitramine and a keto group. A search of the April 2004 release of the Cambridge Structural Database (CSD; Allen, 2002) for the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton gave 32 hits, of which 20 contained the 2,4,6,8-tetraazabicyclo[3.3.0]octan-3,7-dione moiety, six contained 2,4,6,8tetraazabicyclo[3.3.0]octane (glycoluril) derivatives and four contained 3,3,7,7-tetrakis(trifluoromethyl) substituents. In addition, there was one structure each of 2,4,6,8-tetraazabicyclo[3.3.0]octan-3-one-7-thione and 2,4,6,8-tetraazabicyclo[3.3.0]octan-3,7-dinitramine. There are no previous examples of a structure containing the unsymmetrically substituted 2,4,6,8-tetraazabicyclo[3.3.0]octan-7-one skeleton. Thus it is of interest to compare the effects that these substituent patterns have on the two five-membered rings.



Fig. 1 shows the structure of (I) and the atom-numbering scheme. For the purposes of the present discussion, the two five-membered rings will be labeled A (that containing the 2- and 4-aza N atoms) and B (that containing the 6- and 8-aza N atoms). Even though ring A is symmetrically substituted, the two aza N atoms are in very different environments, with one pyramidal and the other planar: the sum of the angles subtended at N2 is 359.2°, and that at N4 is 344.8°. This is in marked contrast with the situation in ring B, where the substituents on the aza N atoms are very different, yet both are essentially planar: the sums of the angles subtended at N6 and N8 are 357.5 and 355.5°, respectively.

Ignoring substituents, the two rings are almost planar [for rings A and B, the average deviations from planarity are

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography



Figure 1

A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.



### Figure 2

A view of the structure of (I) down the *b* axis, showing the packing arrangement and the intermolecular interactions (dashed lines).

0.072 (1) and 0.065 (1) Å, respectively]. In ring A, the largest deviation from planarity is for the pyramidal aza atom N4, which is 0.24 Å from a plane fit (to within 0.02 Å) to the other four atoms of the ring. The dihedral angle between the two ring planes is 68.83 (6)°. The nitramine metrical parameters (Table 1) are similar to those observed in related compounds containing the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton (Boileau et al., 1985, 1988; Flippen-Anderson et al., 1990; George et al., 1992; Gilardi et al., 1992; Gilardi, George & Evans, 2002; Gilardi, Flippen-Anderson & Evans, 2002; Butcher et al., 2004).

Fig. 2 illustrates the hydrogen-bonding interactions in (I), and details of their geometry are given in Table 2. The H atom attached to the amine N atom takes part in strong intermolecular hydrogen-bonding interactions to the keto O atom of an adjacent moiety. In addition, there are several weaker C-H intermolecular hydrogen-bonding interactions with adjoining nitro O atoms. As is usual in crystals containing nitro groups, there are several short intermolecular  $O \cdots O$  contacts, the shortest of which is 2.890 (2) Å. A very short intermolecular  $O \cdots N$  distance of 2.808 (2) Å is also present; this is a quasi-perpendicular approach between a peripheral O atom and the central N atom of two neighboring nitramine groups. Short contacts fitting this pattern are not uncommon involving the highly polar nitramine group, but this contact is unusually short. A search of the April 2004 release of the CSD revealed only six shorter O···N contacts of this type (Flippen-Anderson et al., 1990; George & Gilardi, 1989; Nielsen et al., 1998; Vedachalam et al., 1991; Gilardi, Flippen-Anderson & Evans, 2002). There is also a rather short  $O_{nitro} \cdots C_{carbonvl}$ contact of 3.055 (2) Å which is also quasi-perpendicular, in this case to the carbonyl plane.

The structure has recently been determined (Butcher et al., 2004) of the related compound, 2,5,7-trinitro-2,5,7,9-tetraazabicyclo[4.3.0]nonan-8-one, (II). Both this and (I) contain the same substituents attached to fused tetraaza ring systems {2,5,7,9-tetraazabicyclo[4.3.0]nonane in (II) and 2,4,6,8-tetraazabicyclo[3.3.0]octane in the case of (I)}, so it is of interest to compare their similarities and differences. Of the four aza N atoms in (I), three are approximately planar while the fourth is pyramidal, whereas in (II), two aza N atoms are planar and two are only slightly pyramidal (one of each type in each ring). In both cases, the fused rings have adopted a cis conformation, but while the two five-membered rings in the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton are planar (but not coplanar), in the 2,5,7,9-tetraazabicyclo[4.3.0]nonane derivative the six-membered ring has adopted a nonplanar twistedboat conformation. While both crystal structures show similar intermolecular contacts, in (II) there is a very short  $O_{nitro} \cdots C_{carbonyl}$  contact and a conventional  $O_{nitro} \cdots N_{nitro}$ contact, while in (I) there is a very short  $O_{nitro} \cdot \cdot \cdot N_{nitro}$  contact and a conventional  $O_{nitro}\!\cdots\!C_{carbonyl}$  contact.

## **Experimental**

A sample of (I) was synthesized and crystallized by Clifford L. Coon of the Lawrence Livermore National Laboratory, using methods described by Pagoria et al. (1996).

### Crystal data

| 2                              |                                           |
|--------------------------------|-------------------------------------------|
| $C_4H_5N_7O_7$                 | $D_x = 1.959 \text{ Mg m}^{-3}$           |
| $M_r = 263.15$                 | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/c$           | Cell parameters from 4730                 |
| a = 11.3962 (12)  Å            | reflections                               |
| b = 6.4089(7)  Å               | $\theta = 2.6-26.4^{\circ}$               |
| c = 12.3267 (13)  Å            | $\mu = 0.19 \text{ mm}^{-1}$              |
| $\beta = 97.786 \ (2)^{\circ}$ | T = 94 (2) K                              |
| $V = 892.01 (16) \text{ Å}^3$  | Faceted brick, colorless                  |
| Z = 4                          | $0.38 \times 0.28 \times 0.26 \text{ mm}$ |
|                                |                                           |

### Data collection

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: by integration (Wuensch & Prewitt, 1965)  $T_{\min} = 0.935, T_{\max} = 0.957$ 5880 measured reflections

# Refinement

refinement

Refinement on  $F^2$ 
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035 \\ wR(F^2) &= 0.087 \end{split}$$
S=1.091816 reflections 166 parameters H atoms treated by a mixture of independent and constrained

1816 independent reflections 1662 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.039$  $\theta_{\rm max} = 26.4^{\circ}$ 

 $h = -14 \rightarrow 14$  $k=-8\to7$  $l = -14 \rightarrow 15$ 

 $w = 1/[\sigma^2(F_o^2) + (0.0408P)^2]$ + 0.4733P] where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$ -3  $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^3$  $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ 

Table 1Selected geometric parameters (Å, °).

| C1-N8                 | 1.4339 (19) | N4A - O4B        | 1.2098 (17) |
|-----------------------|-------------|------------------|-------------|
| C1-N2                 | 1.4596 (19) | N4A - O4A        | 1.2281 (16) |
| C1-C5                 | 1.544 (2)   | $O4A - N4A^{ii}$ | 2.8075 (17) |
| N2-N2A                | 1.3358 (18) | C5-N6            | 1.4588 (18) |
| N2-C3                 | 1.457 (2)   | N6–N6A           | 1.3922 (17) |
| N2A - O2A             | 1.2268 (17) | N6-C7            | 1.4285 (19) |
| N2A - O2B             | 1.2324 (18) | N6A - O6A        | 1.2155 (16) |
| $O2A - O4B^{i}$       | 2.8898 (16) | N6A - O6B        | 1.2158 (17) |
| C3-N4                 | 1.4695 (18) | C7-O7            | 1.2046 (18) |
| N4–N4A                | 1.3987 (17) | C7-N8            | 1.350 (2)   |
| N4-C5                 | 1.4539 (18) |                  |             |
| N8-C1-N2              | 113.15 (12) | O4B-N4A-N4       | 118.60 (12) |
| N8-C1-C5              | 104.57 (11) | O4A - N4A - N4   | 115.21 (12) |
| N2-C1-C5              | 100.57 (11) | N4-C5-N6         | 111.27 (12) |
| N2A - N2 - C3         | 122.00 (12) | N4-C5-C1         | 106.54 (11) |
| N2A-N2-C1             | 120.31 (12) | N6-C5-C1         | 100.64 (11) |
| C3-N2-C1              | 117.44 (12) | N6A-N6-C7        | 124.85 (12) |
| O2A - N2A - O2B       | 126.11 (13) | N6A-N6-C5        | 119.10 (12) |
| O2A - N2A - N2        | 117.15 (13) | C7-N6-C5         | 113.53 (12) |
| O2B - N2A - N2        | 116.73 (12) | O6A - N6A - O6B  | 127.54 (13) |
| $N2A - O2A - O4B^{i}$ | 138.27 (10) | O6A-N6A-N6       | 117.77 (12) |
| N2-C3-N4              | 100.37 (11) | O6B - N6A - N6   | 114.68 (12) |
| N4A-N4-C5             | 116.31 (11) | O7-C7-N8         | 128.53 (15) |
| N4A-N4-C3             | 116.26 (11) | O7-C7-N6         | 126.62 (14) |
| C5-N4-C3              | 112.22 (12) | N8-C7-N6         | 104.84 (12) |
| O4B - N4A - O4A       | 126.07 (13) | C7-N8-C1         | 114.02 (13) |

Symmetry codes: (i)  $x, \frac{3}{2} - y, z - \frac{1}{2}$ ; (ii)  $-x, \frac{1}{2} + y, \frac{1}{2} - z$ .

Table 2

| Hydrogen-bonding geometry (A, | ') | • |
|-------------------------------|----|---|
|-------------------------------|----|---|

| $D - H \cdot \cdot \cdot A$                                                                                                                                  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|------------------------------------|--|--|
| $C1-H1\cdots O2A^{i}$                                                                                                                                        | 1.00     | 2.51                    | 3.1902 (18)  | 125                                |  |  |
| $C1 - H1 \cdots O4A^{ii}$                                                                                                                                    | 1.00     | 2.56                    | 3.0407 (18)  | 110                                |  |  |
| $C3-H3A\cdots O4A$                                                                                                                                           | 0.99     | 2.30                    | 2.6637 (19)  | 100                                |  |  |
| $C3-H3B\cdots O6B^{iii}$                                                                                                                                     | 0.99     | 2.45                    | 3.3028 (19)  | 144                                |  |  |
| $C5-H5\cdots O2A^{i}$                                                                                                                                        | 1.00     | 2.56                    | 3.2572 (19)  | 127                                |  |  |
| $C5-H5\cdots O2B^{i}$                                                                                                                                        | 1.00     | 2.29                    | 3.2478 (18)  | 159                                |  |  |
| $C5-H5\cdots O4B$                                                                                                                                            | 1.00     | 2.23                    | 2.6547 (18)  | 104                                |  |  |
| $N8-H8\cdots O7^{iv}$                                                                                                                                        | 0.87 (2) | 2.06 (2)                | 2.8940 (18)  | 161.9 (17)                         |  |  |
| Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$ ; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$ ; (iii) $x, \frac{3}{2} - y, z - \frac{1}{2}$ ; (iv) |          |                         |              |                                    |  |  |

 $1-x, y-\frac{1}{2}, \frac{1}{2}-z.$ 

The amino H atom was located in a difference map and its xyz coordinates were included in the refinement. H atoms attached to

tertiary C atoms were fixed at a C-H distance of 1.00 Å, while H atoms attached to methylene C atoms were fixed at a C-H distance of 0.99 Å. In both cases the geometries were optimized. All H atoms were treated as riding, with  $U_{iso}(H) = 1.2U_{eq}(C,N)$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/ONR program for a 2004 Summer Faculty Fellowship.

#### References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Boileau, P. J., Wimmer, E., Gilardi, R., Stinecipher, M. M., Gallo R. & Pierrot, M. (1988). Acta Cryst. C44, 696–699.
- Boileau, P. J., Wimmer, E., Pierrot, M., Baldy, A. & Gallo R. (1985). *Acta Cryst.* C41, 1680–1683.
- Bruker (2001). *SMART* (Version 5.624) and *SAINT* (Version 6.04) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Evans, R. & Gilardi, R. (2004). *Acta Cryst* E60, o1376–o1378. Flippen-Anderson, J. L., George, C. & Gilardi, R. (1990). *Acta Cryst*. C46,
- 1122–1125. George, C. & Gilardi, R. (1989). Acta Cryst. C45, 1244–1246.
- George, C., Gilardi, R. & Flippen-Anderson, J. L. (1992). Acta Cryst. C48, 1527–1528.
- Gilardi, R., Flippen-Anderson, J. L. & Evans, R. (2002). Acta Cryst. E58, 0972-0974.
- Gilardi, R., George, C. & Evans, R. (2002). Acta Cryst. E58, 0969-0971.
- Gilardi, R., George, C. & Flippen-Anderson, J. L. (1992). Acta Cryst. C48, 1532–1533.
- Nielsen, A. T., Chafin, A. P., Christian S. L., Moore, D. W., Nadler, M. P., Nissan, R. A., Vanderah D. J., Gilardi, R., George, C. & Flippen-Anderson, J. L. (1998). *Tetrahedron*, 54, 11793–11812.
- Pagoria, P. F., Mitchell, A. R., Schmidt, R. D., Coon, C. L. & Jessop, E. S. (1996). Nitration, Am. Chem. Soc. Symp. Ser. 623, 151–164.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Vedachalam, M., Ramakrishnan, V. T., Boyer, J. H., Dagley, I. J., Nelson, K. A., Adolph, H. G., Gilardi, R., George, C. & Flippen-Anderson J. L. (1991). J. Org. Chem. 56, 3413–3419.
- Wuensch, B. & Prewitt, C. (1965). Z. Kristallogr. 122, 24-59.