Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ray J. Butcher, ${ }^{\text {a }}$ Robin Evans ${ }^{\text {b }}$ and R. Gilardi ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and ${ }^{\mathbf{b}}$ Laboratory for the Structure of Matter, Naval Research Laboratory, Washington DC 20375, USA

Correspondence e-mail: gilardi@nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=94 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.087$
Data-to-parameter ratio $=10.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,4,6-Trinitro-2,4,6,8-tetraazabicyclo[3.3.0]-octan-7-one

The structure of 2,4,6-trinitro-2,4,6,8-tetraazabicyclo[3.3.0]-octan-7-one, $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{7} \mathrm{O}_{7}$, is reported. The molecule contains two unsymmetrically substituted planar fused five-membered rings with a cis junction between them.

Comment

The title compound, (I), contains two fused five-membered rings which are unsymmetrically substituted. One ring contains two nitramine groups, while the other contains a single nitramine and a keto group. A search of the April 2004 release of the Cambridge Structural Database (CSD; Allen, 2002) for the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton gave 32 hits, of which 20 contained the 2,4,6,8-tetraazabicyclo[3.3.0] octan-3,7-dione moiety, six contained 2,4,6,8tetraazabicyclo[3.3.0]octane (glycoluril) derivatives and four contained 3,3,7,7-tetrakis(trifluoromethyl) substituents. In addition, there was one structure each of $2,4,6,8$-tetraaza-bicyclo[3.3.0]octan-3-one-7-thione and 2,4,6,8-tetraazabi-cyclo[3.3.0]octan-3,7-dinitramine. There are no previous examples of a structure containing the unsymmetrically substituted 2,4,6,8-tetraazabicyclo[3.3.0]octan-7-one skeleton. Thus it is of interest to compare the effects that these substituent patterns have on the two five-membered rings.

(I)

Fig. 1 shows the structure of (I) and the atom-numbering scheme. For the purposes of the present discussion, the two five-membered rings will be labeled A (that containing the 2 and 4 -aza N atoms) and B (that containing the 6 - and 8 -aza N atoms). Even though ring A is symmetrically substituted, the two aza N atoms are in very different environments, with one pyramidal and the other planar: the sum of the angles subtended at N 2 is 359.2°, and that at N4 is 344.8°. This is in marked contrast with the situation in ring B, where the substituents on the aza N atoms are very different, yet both are essentially planar: the sums of the angles subtended at N6 and N8 are 357.5 and 355.5°, respectively.

Ignoring substituents, the two rings are almost planar [for rings A and B, the average deviations from planarity are

Figure 1

A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A view of the structure of (I) down the b axis, showing the packing arrangement and the intermolecular interactions (dashed lines).
0.072 (1) and 0.065 (1) Å, respectively]. In ring A, the largest deviation from planarity is for the pyramidal aza atom N 4 , which is $0.24 \AA$ from a plane fit (to within $0.02 \AA$) to the other four atoms of the ring. The dihedral angle between the two ring planes is $68.83(6)^{\circ}$. The nitramine metrical parameters (Table 1) are similar to those observed in related compounds containing the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton (Boileau et al., 1985, 1988; Flippen-Anderson et al., 1990; George et al., 1992; Gilardi et al., 1992; Gilardi, George \& Evans, 2002; Gilardi, Flippen-Anderson \& Evans, 2002; Butcher et al., 2004).

Fig. 2 illustrates the hydrogen-bonding interactions in (I), and details of their geometry are given in Table 2. The H atom attached to the amine N atom takes part in strong intermolecular hydrogen-bonding interactions to the keto O atom of an adjacent moiety. In addition, there are several weaker $\mathrm{C}-\mathrm{H}$ intermolecular hydrogen-bonding interactions with adjoining nitro O atoms. As is usual in crystals containing nitro groups, there are several short intermolecular $\mathrm{O} \cdots \mathrm{O}$ contacts, the shortest of which is 2.890 (2) \AA. A very short intermolecular $\mathrm{O} \cdots \mathrm{N}$ distance of 2.808 (2) \AA is also present; this is a quasi-perpendicular approach between a peripheral O atom and the central N atom of two neighboring nitramine groups. Short contacts fitting this pattern are not uncommon involving the highly polar nitramine group, but this contact is unusually
short. A search of the April 2004 release of the CSD revealed only six shorter $\mathrm{O} \cdots \mathrm{N}$ contacts of this type (FlippenAnderson et al., 1990; George \& Gilardi, 1989; Nielsen et al., 1998; Vedachalam et al., 1991; Gilardi, Flippen-Anderson \& Evans, 2002). There is also a rather short $\mathrm{O}_{\text {nitro }} \cdots \mathrm{C}_{\text {carbonyl }}$ contact of 3.055 (2) \AA which is also quasi-perpendicular, in this case to the carbonyl plane.

The structure has recently been determined (Butcher et al., 2004) of the related compound, 2,5,7-trinitro-2,5,7,9-tetra-azabicyclo[4.3.0]nonan-8-one, (II). Both this and (I) contain the same substituents attached to fused tetraaza ring systems \{2,5,7,9-tetraazabicyclo[4.3.0]nonane in (II) and 2,4,6,8-tetraazabicyclo[3.3.0] octane in the case of (I)\}, so it is of interest to compare their similarities and differences. Of the four aza N atoms in (I), three are approximately planar while the fourth is pyramidal, whereas in (II), two aza N atoms are planar and two are only slightly pyramidal (one of each type in each ring). In both cases, the fused rings have adopted a cis conformation, but while the two five-membered rings in the 2,4,6,8-tetraazabicyclo[3.3.0]octane skeleton are planar (but not coplanar), in the 2,5,7,9-tetraazabicyclo[4.3.0]nonane derivative the six-membered ring has adopted a nonplanar twistedboat conformation. While both crystal structures show similar intermolecular contacts, in (II) there is a very short $\mathrm{O}_{\text {nitro }} \cdots \mathrm{C}_{\text {carbonyl }}$ contact and a conventional $\mathrm{O}_{\text {nitro }} \cdots \mathrm{N}_{\text {nitro }}$ contact, while in (I) there is a very short $\mathrm{O}_{\text {nitro }} \cdots \mathrm{N}_{\text {nitro }}$ contact and a conventional $\mathrm{O}_{\text {nitro }} \cdots \mathrm{C}_{\text {carbonyl }}$ contact.

Experimental

A sample of (I) was synthesized and crystallized by Clifford L. Coon of the Lawrence Livermore National Laboratory, using methods described by Pagoria et al. (1996).

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{7} \mathrm{O}_{7}$
$M_{r}=263.15$
Monoclinic, $P 2_{1} / c$
$a=11.3962$ (12) £
$b=6.4089$ (7) A
$c=12.3267(13) \AA$
$\beta=97.786$ (2) ${ }^{\circ}$
$V=892.01(16) \AA^{3}$
$Z=4$

$$
D_{x}=1.959 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4730
reflections
$\theta=2.6-26.4^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=94$ (2) K
Faceted brick, colorless
$0.38 \times 0.28 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: by integration (Wuensch \& Prewitt, 1965)
$T_{\text {min }}=0.935, T_{\text {max }}=0.957$
5880 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.09$
1816 reflections
166 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

C1-N8	1.4339 (19)	$\mathrm{N} 4 A-\mathrm{O} 4 B$	1.2098 (17)
$\mathrm{C} 1-\mathrm{N} 2$	1.4596 (19)	$\mathrm{N} 4 A-\mathrm{O} 4 A$	1.2281 (16)
C1-C5	1.544 (2)	$\mathrm{O} 4 A-\mathrm{N} 4 A^{\text {ii }}$	2.8075 (17)
$\mathrm{N} 2-\mathrm{N} 2 A$	1.3358 (18)	C5-N6	1.4588 (18)
N2-C3	1.457 (2)	N6-N6A	1.3922 (17)
$\mathrm{N} 2 A-\mathrm{O} 2 A$	1.2268 (17)	N6-C7	1.4285 (19)
$\mathrm{N} 2 A-\mathrm{O} 2 B$	1.2324 (18)	N6 $A-\mathrm{O} 6 A$	1.2155 (16)
$\mathrm{O} 2 A-\mathrm{O} 4 B^{\mathrm{i}}$	2.8898 (16)	N6 $A-\mathrm{O} 6 B$	1.2158 (17)
C3-N4	1.4695 (18)	C7-O7	1.2046 (18)
N4-N4A	1.3987 (17)	C7-N8	1.350 (2)
N4-C5	1.4539 (18)		
N8-C1-N2	113.15 (12)	$\mathrm{O} 4 B-\mathrm{N} 4 A-\mathrm{N} 4$	118.60 (12)
N8-C1-C5	104.57 (11)	$\mathrm{O} 4 A-\mathrm{N} 4 A-\mathrm{N} 4$	115.21 (12)
N2-C1-C5	100.57 (11)	N4-C5-N6	111.27 (12)
$\mathrm{N} 2 A-\mathrm{N} 2-\mathrm{C} 3$	122.00 (12)	N4-C5-C1	106.54 (11)
$\mathrm{N} 2 A-\mathrm{N} 2-\mathrm{C} 1$	120.31 (12)	N6-C5-C1	100.64 (11)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	117.44 (12)	N6 $A-\mathrm{N} 6-\mathrm{C} 7$	124.85 (12)
$\mathrm{O} 2 A-\mathrm{N} 2 A-\mathrm{O} 2 B$	126.11 (13)	N6 A - N6-C5	119.10 (12)
$\mathrm{O} 2 A-\mathrm{N} 2 A-\mathrm{N} 2$	117.15 (13)	C7-N6-C5	113.53 (12)
$\mathrm{O} 2 B-\mathrm{N} 2 A-\mathrm{N} 2$	116.73 (12)	$\mathrm{O} 64-\mathrm{N} 6 A-\mathrm{O} 6 B$	127.54 (13)
$\mathrm{N} 2 A-\mathrm{O} 2 A-\mathrm{O} 4 B^{\mathrm{i}}$	138.27 (10)	$\mathrm{O} 6 A-\mathrm{N} 6 A-\mathrm{N} 6$	117.77 (12)
N2-C3-N4	100.37 (11)	$\mathrm{O} 6 B-\mathrm{N} 6 A-\mathrm{N} 6$	114.68 (12)
$\mathrm{N} 4 A-\mathrm{N} 4-\mathrm{C} 5$	116.31 (11)	O7-C7-N8	128.53 (15)
$\mathrm{N} 4 A-\mathrm{N} 4-\mathrm{C} 3$	116.26 (11)	O7-C7-N6	126.62 (14)
C5-N4-C3	112.22 (12)	N8-C7-N6	104.84 (12)
$\mathrm{O} 4 B-\mathrm{N} 4 A-\mathrm{O} 4 A$	126.07 (13)	C7-N8-C1	114.02 (13)

Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2 A^{\mathrm{i}}$	1.00	2.51	$3.1902(18)$	125
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 4 A^{\mathrm{ii}}$	1.00	2.56	$3.0407(18)$	110
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4 A$	0.99	2.30	$2.6637(19)$	100
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O} 6 B^{\text {iii }}$	0.99	2.45	$3.3028(19)$	144
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2 A^{\mathrm{i}}$	1.00	2.56	$3.2572(19)$	127
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	1.00	2.29	$3.2478(18)$	159
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 4 B$	1.00	2.23	$2.6547(18)$	104
$\mathrm{~N} 8-\mathrm{H} 8 \cdots \mathrm{O} 7^{\mathrm{iv}}$	$0.87(2)$	$2.06(2)$	$2.8940(18)$	$161.9(17)$
Symmetry codes:	(i)	$x, \frac{1}{2}-y, \frac{1}{2}+z ;$	(ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (iii) $x, \frac{3}{2}-y, z-\frac{1}{2} ; \quad$ (iv)	
$1-x, y-\frac{1}{2}, \frac{1}{2}-z$.				

The amino H atom was located in a difference map and its $x y z$ coordinates were included in the refinement. H atoms attached to
tertiary C atoms were fixed at a $\mathrm{C}-\mathrm{H}$ distance of $1.00 \AA$, while H atoms attached to methylene C atoms were fixed at a $\mathrm{C}-\mathrm{H}$ distance of $0.99 \AA$. In both cases the geometries were optimized. All H atoms were treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/ONR program for a 2004 Summer Faculty Fellowship.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Boileau, P. J., Wimmer, E., Gilardi, R., Stinecipher, M. M., Gallo R. \& Pierrot, M. (1988). Acta Cryst. C44, 696-699.

Boileau, P. J., Wimmer, E., Pierrot, M., Baldy, A. \& Gallo R. (1985). Acta Cryst. C41, 1680-1683.
Bruker (2001). SMART (Version 5.624) and SAINT (Version 6.04) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Butcher, R. J., Evans, R. \& Gilardi, R. (2004). Acta Cryst E60, o1376-o1378.
Flippen-Anderson, J. L., George, C. \& Gilardi, R. (1990). Acta Cryst. C46, 1122-1125.
George, C. \& Gilardi, R. (1989). Acta Cryst. C45, 1244-1246.
George, C., Gilardi, R. \& Flippen-Anderson, J. L. (1992). Acta Cryst. C48, 1527-1528.
Gilardi, R., Flippen-Anderson, J. L. \& Evans, R. (2002). Acta Cryst. E58, o972o974.
Gilardi, R., George, C. \& Evans, R. (2002). Acta Cryst. E58, o969-o971.
Gilardi, R., George, C. \& Flippen-Anderson, J. L. (1992). Acta Cryst. C48, 1532-1533.
Nielsen, A. T., Chafin, A. P., Christian S. L., Moore, D. W., Nadler, M. P., Nissan, R. A., Vanderah D. J., Gilardi, R., George, C. \& Flippen-Anderson, J. L. (1998). Tetrahedron, 54, 11793-11812.

Pagoria, P. F., Mitchell, A. R., Schmidt, R. D., Coon, C. L. \& Jessop, E. S. (1996). Nitration, Am. Chem. Soc. Symp. Ser. 623, 151-164.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Vedachalam, M., Ramakrishnan, V. T., Boyer, J. H., Dagley, I. J., Nelson, K. A., Adolph, H. G., Gilardi, R., George, C. \& Flippen-Anderson J. L. (1991). J. Org. Chem. 56, 3413-3419.
Wuensch, B. \& Prewitt, C. (1965). Z. Kristallogr. 122, 24-59.

